GAS FLOW RATE THROUGH FULL-OPEN CONTROL VALVE OR REGULATOR Version 1.04 7 Feb 2005

Note: User must fill in shaded cells.

Plant Name:	
Location:	
Engineering Job No.	
Vessel / Equipment No.	
Service:	
Manufacturer:	
Model No.	
Nominal Size (Inches):	
Relief Device Designer:	
Service: Manufacturer: Model No. Nominal Size (Inches):	

Input Data:

Upstream Pressure	P ₁	264.70	psia	
Downstream Pressure	P ₂	146.70	psia	
Upstream Temperature	T ₁	0.0	° C	
Gas Molecular Weight	MW	28.013		
Compressibility	Z	1.000		(See Notes Below)
Provide two of the four valve parameters				
Valve Flow Coefficient	C _v	60.00		
Valve Type Parameter	x t	1.0		(See Notes Below)
Valve gas coefficient	Cg			
Fisher valve parameter	C ₁			

Results:

Valve Flow Coefficient	C _v	60.00	
Valve Type Parameter	X _t	1.0	
Upstream Temperature	T ₁	492.0	° R
Gas Density	ρ ₁	1.4046	lbs/ft ³
Difference Between P ₁ and P ₂	ΔΡ	118.00	psi
Valve Type Parameter X Upstream Pressure	x _t P ₁	264.70	psi
Pressure Drop Through Valve	ΔP_x	118.00	psi
Expansion Factor	Y	0.851	
Gas Flow Rate	W	41630.26	lbs/hr

Notes:

$$\rho_{1} = \frac{P_{1} MW}{10.72 T_{1}}$$

$$\Delta P_{x} = lesser \ of \ \Delta P \ or \ x_{t} P_{1}$$

$$Y = 1 - \frac{\Delta P_{x}}{3 x_{t} P_{1}}$$

$$W = 63.3 C_{y} Y \sqrt{\Delta P_{x} \rho_{1}}$$

$$C_{z} = C_{z} / C_{z}$$

Valve	
Туре	x _t
Venturi Angle	0.2
90° Butterfly	0.2
60° Butterfly	0.5
Globe	0.9
Default	1.0

 $C_v - C_g / C_1$

 $x_t = 0.00063 C_1^2$

Xt

Using the default value (1.0) is conservative but **flow will never choke**.

If the Xt is 0.8 then the valve will choke when the pressure drops by 80%. If the Xt is 0.2 the valve will choke when the pressure drops by 20%.

Xt values are generally available in vendor literature

The rule-of-thumb value for Xt is 0.5. Note that this is not such a "safe" number to choose since this valve varies greatly depending on the style of valve. If you estimated a 0.5 valve and have a globe valve , for example, you are actually going to get much more flow than you estimated.

Ζ

Compressibility is a function of temperature and pressure. Note that the flow rate increases when the Z value is reduced from 1.0. So, to be conservative you need to estimate a low Z value of look it up by doing a quick SafSiz run (SafSiz reports this value).