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  APPENDIX  E  
ADIABATIC COMPRESSIBLE FLOW WITH FRICTION, 
USING MACH NUMBER AS A PARAMETER     

     This appendix gives derivations for application equa-
tions presented in Chapter  4 . 

 Street et al.  [1]  and Shapiro  [2]  give the following 
relation for a constant - area duct fl owing a gas  with sonic 
velocity at the exit :
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   (4.16, repeated)  

  where
fave        =  average Darcy friction factor along the duct,  
Lmax        =  maximum attainable duct length with  M  at the 

inlet, ft (or m),  
D        =  duct diameter, ft (or m),  
γ        =  ratio of specifi c heats of fl owing gas, and  
M        =  Mach number of the gas fl ow at the duct inlet.    

 In the development of this equation,  f  is assumed to be 
a constant, and  fave  is taken as a reasonable value for  f . 
In actuality, of course, since fl uid temperature changes 
continuously along the duct, the fl uid viscosity also 
changes, and then so does Reynolds Number — resulting 
in a varying friction factor. But it turns out that the 
variation is modest enough to be handled by using the 
average friction factor.  

  E.1   SOLUTION WHEN  STATIC  PRESSURE 
AND STATIC  TEMPERATURE ARE KNOWN 

 Equation  4.16  may be used to fi nd the  Lmax  of the duct 
if the essential duct data are available: fl ow rate, inlet 
static pressure, inlet static temperature, duct diameter, 
friction factor, and gas ratio of specifi c heats, molecular 
weight, and compressibility factor. The Mach number 
of a gas fl owing in a duct (assuming a fl at velocity 
profi le) is:

    M
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 The equation for the acoustic velocity A is:
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 Utilizing the equation of state, Equations  1.6  in Chapter 
 1 , the acoustic velocity may be expressed as:
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the Mach number M  there and then use Equation  4.16  
to fi nd the ( fL / D ) limit  at that end of the duct. By Equa-
tion  8.1 , this can be called  Klimit  at that end. (Remember 
that because f  and  D  are constant,  K  in this context is 
simply length with a constant coeffi cient.) Note that 
since the fl ow exits from the duct subsonically, this  Klimit

includes a virtual length of duct at which the fl ow would 
attain sonic velocity (provided that the pressure at the 
virtual outlet was low enough). Now, because  f / D  is 
constant,  K  is proportional to  L  so that we can write:  

    ( ) ( ) .K K K1 2limit line limit= +     (E.3)   

 Knowing the line resistance coeffi cient  Kline  and limit 
resistance coeffi cient ( K ) limit  at one end of the duct 
enables us to fi nd the limit resistance coeffi cient at the 
other end of the duct. Then, since ( K ) limit  is associated 
with M  at that end by Equation  4.16 , we may fi nd  M  at 
that end by solving the equation. 

 Because Equation  4.16  cannot be solved for  M
explicitly, it must be solved by trial and error. The 
Newton – Raphson method is a convenient method for 
the solution. In order to implement it, we need to rear-
range the equation so that we have an expression that 
equals zero . We can do this by subtracting ( K1 ) limit  from 
both sides of Equation  E.3 :

    0 2 1= − −[ ]( ) ( ) .K K Klimit limit line     (E.3, rearranged)   

 Now ( K1 ) limit     –     Kline     =    ( K2 ) limit , and while we know the 
values of ( K1 ) limit ,  Kline , and ( K2 ) limit , we do not know the 
value of the Mach number yielding ( K2 ) limit , and we are 
interested in knowing this value so that we may fi nd the 
fl owing conditions at the actual duct outlet. Let us call 
Ki  the guessed value of ( K2 ) limit  and write: 

    f M K Ki( ) ( ) .= − =2 0limit     (E.4)   

 This expression is supposed to equal zero, and it will be 
if we evaluate Ki  using the right Mach number. If we 
guess a Mach number and evaluate Ki  by Equation  4.16 , 
the result is not likely to equal Klimit  and  f ( M ) is 
not likely to equal zero. This is shown graphically in 
Figure  E.2 .   

 If we extrapolate down the function ’ s tangent, it is 
clear that at the intersection with f ( M )    =    0, we will fi nd 
a much better guess for M . To do this requires the deriv-
ative of K  with respect to  M :
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 (In these two equations,  m  represents molecular weight, 
not mass.) The compressibility factor  z  may be evalu-
ated using one of the formulas found in Appendix  D . 
Utilizing Equations  E.1a  and  E.1b , and   �m AV m= ρ  and 
�w AV w= ρ  from Chapter  2 , we may write:
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 Using this Mach number, evaluated at the duct inlet,  Lmax

becomes immediately available from Equation  4.16 . 
 Equation  4.16  may not be violated.  *   The length of 

the duct may not exceed Lmax  with sonic velocity ( M     =    1) 
occurring at the exit. However, if the length of the duct 
is less than Lmax  as given by Equation  4.16 , then the exit 
Mach number will be less than unity. This is the most 
frequently encountered case. 

 Consider a gas receiver discharging through a round 
duct of known length Lline  to a lower pressure region 
and suppose that the pressure conditions are such that 
the discharging gas exits from the duct at subsonic 
velocity (see Fig.  E.1 ). Assume that friction factor  f  and 
diameter D  are constant. If we know the fl owing condi-
tions at one end — either end — of the duct (fl ow rate, 
duct diameter, pressure, and temperature), we may fi nd 

FIGURE E.1.     Subsonic constant - area gas fl ow duct  (Fig.  4.5 , 
repeated).
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*      This is not to say that supersonic fl ow cannot occur in a constant 
area duct; it can, but the fl ow must be introduced to the duct in a 
supersonic condition. 
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 Taking the ratio of the expression evaluated for  M     =     M1

to that for M     =     M2  yields:
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  from which the desired pressure is easily found. The 
static temperature is available similarly from:
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 The ratio of the inlet and outlet static temperatures 
is thus:
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  from which the desired temperature is easily found. 
 The foregoing relationships are useful if the static 

pressure and static temperature at one end of the duct 
are known. If one or the other of the static values is not 
known, but the corresponding total value is known (and 
this is often, if not usually, the case) these equations may 
still be solved, but account must be made for the diver-
gence between total and static values. For instance, if a 
gas in a pressurized vessel is allowed to escape to atmo-
sphere through a duct and it attains sonic velocity at the 
end of the conduit, the static pressure at the outlet end 
of the duct may be as low as half its total pressure and 
static temperature may be as low as 80% of its total 
temperature. 

 There are three cases in which the required static 
values are not all known: (1) static pressure and total 
temperature are known; (2) total pressure and total 
temperature are known; and (3) total pressure and 
static temperature are known. These will be consid-
ered in order. We must make use of the following 
relationships:
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  where  T ,  P ,  Tt ,  Pt , and  M  are local values (i.e., all at the 
same location). 

 Now a better approximation of  M  may be found with 
the extrapolation formula:
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  where  Mi+ 1  is the improved approximation and  Mi  is the 
earlier or guessed value. As the natural logarithm term 
in Equation  4.16  is much smaller than the preceding 
term, use the approximation:
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  for the fi rst guess of  M . This guess for  M  may be entered 
in Equation  4.16  to fi nd  Ki , the estimated limit on 
K  based on  M . Enter it also in Equation  E.5  to get 
dKlimit / dM . Then enter all three variables in Equation 
 E.6  to obtain an improved estimate of  M . Repeat the 
process to get Ki  and  dKlimit / dM  at the new, better esti-
mate of M , and then a much improved estimate of  M . 

 After several iterations, the second term in the itera-
tion formula will become quite small and the successive 
approximations of M  will become more nearly alike. 
When the corrections become as small as desired (say, 
one part in a million), the iterations may be halted and 
the Mach number considered solved. 

 Once the unknown Mach number is found, the accom-
panying pressure and temperature may be found. The 
static pressure, in terms of the local Mach number and 
the static pressure P *   at the location where Mach number 
is unity (that is, where velocity is sonic) is given by:

FIGURE E.2.     Mach number solution by the Newton –
 Raphson method.  

Function--
versus Mach Number

Tangent
to Curve

Result of
Guess

Desired
Improved

Guess
Guessed
Mach Number

Inlet Mach Number

K
ti

mil

limitK

(      )K i

limitK



272 ADIABATIC COMPRESSIBLE FLOW WITH FRICTION, USING MACH NUMBER AS A PARAMETER

  E.3   SOLUTION WHEN  TOTAL  PRESSURE 
AND TOTAL  TEMPERATURE ARE KNOWN 

 If  total pressure  and  total temperature  are known at one 
end of the duct, the expressions for static pressure in 
terms of total pressure and static temperature in terms 
of total temperature may be substituted into Equation 
 E.14  to obtain the equation for  M . But in order to sim-
plify the algebra, let us simplify the equations for  Tt  and 
Pt  (Eqs.  E.12  and  E.13 ) by substituting the parameter  X
for the expression 1    +     M 2 ( γ     –    1)/2:
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 Now Equation  E.14  may be written as:
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 Squaring and substituting 1    +     M2 ( γ     –    1)/2 for  X  yields:

    M M M2 2 1 1
1 1 2= + −[ ] + −

core
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 Equation  E.22  cannot be solved explicitly. Using the 
Newton – Raphson iterative method, however, it is easily 
solved. The solution is simpler if we use our parameter 
X  as the variable. In the equation  X     =    1    +     M 2 ( γ     –    1)/2, 
solve for M 2 :
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 Now substitute these expressions into Equation  E.22  
and solve for zero:
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 In the Newton – Raphson method, we need to set this 
function equal to f ( X  ) and differentiate in order to fi nd 
the value of X  when the function is equal to zero. The 
derivative of f ( X  ) is:

    ′ = + −−f X M X( ) ./( )γ γ1
2

12 1
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 In order to simplify the equations, let us recast the 
equation for Mach number (Eq.  E.2a  or  E.2b ) in the 
following form:

    M B T P= / ,     (E.14)  

  where
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  E.2   SOLUTION WHEN  STATIC  PRESSURE 
AND TOTAL  TEMPERATURE ARE KNOWN 

 Now, if  static pressure  and  total temperature  are known, 
substitute the expression for static temperature T  (Eq. 
 E.12 ), in terms of total temperature  Tt , in place of  T ; 
then:
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 This equation is a quadratic in  M2  whose solution is:
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 Note the similarity of the expression   B T Pt /  in Equa-
tion  E.17  to that for Mach number  M  in Equation  E.14 . 
They are identical except that the one above contains 
Tt  while Equation  E.14  contains simply  T . Let us there-
fore call the expression (and similar expressions utiliz-
ing the available temperature and pressure, whether 
they be static or total)  “ core Mach number, ”   Mcore , 
because of its similarity to the simple expression for 
Mach number based on static values, and because it is 
the  “ core ”  of the expression for Mach number when 
other than static values are utilized. Then, for the  static
pressure  and  total temperature  case, we may write:
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 This  M 2  may now be substituted into Equation  4.16  to 
fi nd the  faveLmax / D  or  Klimit , and from thence to fi nd the 
Mach number at the other end of the duct and the 
accompanying pressure and temperature.  
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 Therefore, at  f′ ( X  )    =    0, where  f ( X  )    =     f ( X  ) min ,  X  is:
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 Substituting this value for  X  into the expression for  f ( X  ) 
(see Eq.  E.25 ) we fi nd that:
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     •      If  f ( X  ) min     <    0, two solutions exist as at (2) and (3), and 
since in duct fl ow we are interested in the subsonic 
solution, our initial guess for  X , that is,  Xi= 0 , must be 
less than X  at  f ( X  ) min  (that is,  X  from Eq.  E.29 ).  

   •      If  f ( X  ) min     =    0, this is the limiting condition, and may 
be treated accordingly.  

   •      If  f ( X  ) min     >    0, there is no solution, the input condi-
tions are impossible, and the calculation may be 
halted or redirected, as, for instance, making the pipe 
diameter larger or reducing the fl ow rate, depending 
on what part of your design you are pursuing. If your 
design has a fi xed fl ow rate, you can increase the pipe 
size. If your design has a fi xed pipe size, you can 
reduce the fl ow rate to determine what fl ow it can 
handle and from this, you can determine the accom-
panying pressures and temperatures.     

  E.4   SOLUTION WHEN  TOTAL  PRESSURE 
AND STATIC  TEMPERATURE ARE KNOWN 

 The equations for solving for  M  if  total pressure  and 
static temperature  are given are similar to those derived 
above for total pressure and total temperature, and 
are derived similarly. Mach number is given by Equa-
tion  E.14 ,

    M B T P= / ,     (E.14, repeated)   

 where  B  is defi ned by Equation  E.15a  or  E.15b . In 
this case, static temperature is already known, but 
the known pressure is total pressure, from which static 
pressure must be determined using Equation  E.13 , 
which is
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M
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 Using the functions for  f ( X  ) and  f′ ( X  ) defi ned above, 
any degree of precision may be obtained by repeated 
application of:
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  where  Xi  is an estimate and  Xi+ 1  is a much closer esti-
mate. After several successive iterations when the value 
of f ( X  ) is suffi ciently close to zero, the value of  X  will 
be established. Then  M  may be found from Equation 
 E.23  and Equation  4.16  evaluated for  K . 

 A pitfall in employing this technique lies in assuming 
the equation has a solution. The graph of  f ( X  ) versus 
X  is illustrated in Figure  E.3 . If the fl ow rate is 0 then 
Mcore     =    0 and  f ( X  ) crosses the zero axis at  X     =    1. As   �w
is increased, the curve moves up and crosses the zero 
axis in two places, points (2) and (3) in the illustration, 
so there are actually two solutions — one is subsonic and 
one is supersonic. Depending on the value of your initial 
guess for Xi= 0  your solution for  M  might be either the 
subsonic one or the supersonic one.   

 As   �w is increased more, the  f ( X  ) curve intersections 
of the f ( X  )    =    0 line become closer together; then, when 
the crossings coincide the f ( X  ) curve becomes tangent to 
the zero axis, and  M     =    1, the fl ow is sonic at the point of 
interest. At this point   �w is maximized and becomes   �wmax.
If   �w  is increased further,  f ( X  ) does not intersect the zero 
axis and there is no solution. This indicates that for any 
given total pressure and total temperature condition, 
fl ow in a constant area duct cannot exceed a discrete 
value where Mach number at the outlet becomes unity. 

 The diffi culty described above may be easily avoided 
by making the following test. At the minimum value of 
f ( X  ),  f ′ ( X  )    =    0:

    ′ = + − =−f X M X( ) ./( )γ γ1
2

1 02 2 1
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FIGURE E.3.     Graph of  f ( X  ) versus  X .  
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 The value of  X  at  f′ ( X  )    =    0 is:

    X M= ( )− − +γ γ γ
core
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 The value of  f ( X  ) min  is:
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 The caveats following those equations are also the same 
for this case:

    •      If  f ( X  ) min     <    0, two solutions exist, and since in duct 
fl ow what we are interested in is the subsonic solu-
tion, our initial guess for  X , that is,  Xi= 0 , must be less 
than X  at  f ( X  ) min  (that is,  X  from Eq.  E.34  for this 
case). By making the fi rst guess for  X  (i.e.,  Xi= 0 ) less 
than X  at  f ( X  ) min , Equation  E.27  searches for the 
solution on the part of the curve where f′ ( X  ) is nega-
tive, the descending part of the curve. The subsonic 
solution lies somewhere on the descending part of the 
curve and the supersonic solution lies on the ascend-
ing part of the curve.  

   •      If  f ( X  ) min     =    0, this is the limiting condition, and may 
be treated accordingly.  

   •      If  f ( X  ) min     >    0, there is no solution, the input condi-
tions are impossible, and the calculation may be 
halted or redirected, as, for instance, making the pipe 
diameter larger or reducing the fl ow rate, depending 
on what part of your design you are pursuing. If your 
design has a fi xed fl ow rate, you can increase the pipe 
size. If your design has a fi xed pipe size, you can 
reduce the fl ow rate to determine what fl ow it can 
handle and from this you can determine the accom-
panying pressures and temperatures.     
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 Substituting this expression for  P  in Equation  E.14  
yields:

M B T P
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 We have previously defi ned   B T P/  as  Mcore  without 
regard as to whether T  or  P  is total or static, so we can 
write the equation as:
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1 1 22 1

( )/ .
/( )γ γ γ

 Upon squaring and substituting  X  for 1    +     M2 ( γ     –    1)/2, 
the equation becomes:
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   (E.31)   

 Solving the equation  X     =    1    +     M2 ( γ     –    1)/2 for  M2  yielded 
Equation  E.23 :
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    (E.23, repeated)   

 which, when substituted in Equation  E.31 , gives:
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 If we rearrange this and make the rearrangement equal 
zero we obtain:

0
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12 2 1= − − +−γ γ γM X Xcore

/( ) .

 If we call the right side of this equation  f ( X  ) we get a 
function that is supposed to equal zero (but it won ’ t 
equal zero unless we discover the right value for X  ):

    f X M X X( ) ./( )= − − +−γ γ γ1
2

12 1
core
2     (E.32)   

 In order to fi nd  X  we need the derivative of Equation 
 E.32 , which is

    ′ = −+ −f X M X( ) .( )/( )γ γ γ
core
2 1 1 1     (E.33)   

 Equations  E.32  through  E.35  should be applied in the 
same fashion as Equations  E.19  through  E.30 . Using the 
functions for f ( X  ) and  f′ ( X  ) defi ned above, any degree of 
precision may be obtained by repeated application of:


